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TECHNOMETRICS Vor. 9, No. 3 Avucust 1967

(Classical and Inverse Regression
Methods of Calibration

R. G. KRUTCHKOFF

Virginia Polytechnic Institute

The Classical and Inverse least squares methods of linear calibration are com-
pared by Monte Carlo methods. The Inverse approach is found to be superior to the
Classical approach from a mean squared error point of view.

INTRODUCTION

Consider the problem of calibrating an instrument, say a pressure gauge.
Let us assume that it has already been determined that the gauge response
is a linear function, that is, the increase in gauge marking is proportional to
the increase in pressure. In order to calibrate the gauge, one subjects it to two
or more controlled pressures and notes the gauge markings. Using these data,
the calibration parameters are calculated, and the guage is calibrated. The
gauge then is used to determine unknown pressures simply by reading the
calibrated markings.

The problem of calibration is quite general, and could have been given in
terms of measuring temperature, acidity, salinity, etc. The pressure gauge
example will, however, be used throughout the introduction as an illustration.

If one uses z to represent the controlled variable (the pressure) and y the
measured variable (the gauge marking) the relation between x and y can be
given by ‘

y=a+pfr—+e 1)
where « and 8 are the parameters in the linear relationship (i.e. the intercept

and slope), and where e represents the reading error. Two methods of calibration
will be considered and compared in the following sections.

Method A: The Classical Approach.

Using the model given by (1) with N values of z (not necessarily different
values), and independent identically distributed errors with zero mean, one
can write the model as

y.~=a+Bz.~+e.~ ?:=1,2,“’,N- (2)
If we let

N

= ) z/N

i=1
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N
g= El y:/N
U = x; — &
and
v, =Y —F
then the least squares estimators b of 8 and a of « are
N
Z UY;
p = =L (3)

~
DR

1=1

and
a =7 — bE. 4)
The least squares line is
y=a+bz ®)
and the corresponding calibration equation becomes
—a
z = y—b— (6)

If one now uses the gauge to measure an unknown pressure (say X) from a
gauge reading Y the estimate for the pressure is

Y—a
X = b ™

Method B: The Inverse Approach.

The model (1) can be rewritten so that it becomes

z=v+ oy +¢ 8)
where
'y=—%, 5=%,and e’=—§°
Considering the same data as in Method A the model may be written
z; = v + dy; + € 1=1,2,---,N. (9)

The least squares estimators d of § and ¢ of v are
N
Z UL
d = 7=1

N
20
i=1

(10)

and
c =T —dj. (11)



CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION 427

The calibration equation then is

z =c+ dy. (12)
If one now reads Y on the gauge, the estimate of the unknown pressure is
X =c+4dY. (13)

The estimates given by equations (7) and (13) in general will not be the same.
One has, therefore, to choose between the two.

In an invited paper presented to the American Statistical Association in
Detroit on December 29, 1938, Dr. C. Eisenhart discussed the problem of
choosing between these methods. In the subsequent paper (Eisenhart (1939))
he says,

It does not seem to be generally realized that the fitting should be done in
terms of the deviations which actually represent ‘error.’ Thus when the
research worker selects the X values in advance, and holds x to these values
without error, and then observes the corresponding y values, the errors are
in the y values, so that even if he is interested in using observed values of Y
to estimate X, he should nevertheless fit ¥ = a + bX and then use the in-
verse of this relation to estimate X, i.e. X = (¥ — a)/b, with the best avail-
able estimate of Y substituted for Y.

Eisenhart then presents two analysis of variance tables. The table he places
on the left is the usual analysis of variance table, while the one he places on
the right is a corresponding analysis which assumes that y is controlled and
z is measured with error. He then states,

“In short, remembering that we are dealing with the case tn which the values
of X are chosen by the research worker and only the values of Y are subject
to error, the relation between X and Y betng asin (1) [ap + a1 X + Y = 0]
or its equivalent form (2) [Y = a 4 BX], we see that the analysis of vari-
ance table on the left separates Z (y — 9)° into portions whose meanings
are clear.”

He then says “The analysis of variance table on the right, on the other hand,
can be misleading if it is interpreted hastily.” Without any further comparisons
he concludes;

“Briefly stated, when the values of x have been selected by the research worker
and the corresponding y values observed, the line obtained by minimizing
> (X — 1)’ [hemeans > (X — X)?] is meaningless, and (4) [V = a + bX]
1s accordingly the only correct estimate of the postulated linear relationship
between X and Y wherefore, if it is desired to reason from Y to X this must
be done by means of X = (¥ — a)/b, namely (4) solved for X.”

After the appearance of this article Method B, unfortunately, seems to have
been put aside. Subsequent texts and journal articles which deal with the
calibration problem use Method A exclusively. See, for example, Bennett and
Franklin (1954), Mandel and Linning (1957), Mandel (1958), Williams (1959),
Brownlee (1960), Linning and Mandel (1964), and Ott (1966). Since no numer-
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ical comparison of these two methods was made by Lisenhart it is now proposed
that the problem of deciding between them be reopened.

As a basis for the criterion for choosing the better method of calibration,
we will use the standard criterion of mean squared error

EX - X)°. (14)

Since £ is a function of the observations y, , -+ , ¥ and Y, the expectation
must be with respect to these random variables. The mean squared error is
then a function of the unknown pressure X. One could now require, for the
criterion, that the mean squared error be smallest with respect to some weighting
function (say f(z)) giving the criterion as

f BE — X)#(X) dX. (15)

Another possible criterion, still using the mean squared error, is to choose the
method with the smallest maximum mean squared error, that is, choose the
method which minimizes the

max EX - X)%. (16)

Other criteria could also be used. This discussion, however, will turn out to
be quite academic since the results will indicate that Method B has a smaller
mean squared error than Method A for all X. This being the case, any criterion
based on the mean squared error will favor the Inverse approach, Method B,
over the Classical approach, Method A. In the following sections, the mean
squared errors for Method A and for Method B will be compared using Monte
Carlo methods.

TaE MoNTE CARLO PROCEDURE

As a starting point, let us consider the model of equation (1) i.e. y = o +
Bz + e with @ = 0 and 8 = .5 (a line through the origin with a slope of 30°).
Since the range will enter into the problem merely as a scale factor, let us
assume that the range of z is [0, 1] and that the standard deviation of the error
is 109, of the range (i.e. ¢ = .1).

Imagine designing the calibration experiment so that there are three observa-
tions at each of the end points (x = 0, £ = 1). After obtaining six values for
y one can use equations (3) and (4) to obtain b and a and equations (10) and
(11) to obtain d and ¢. One can now use Method A and Method B and obtain
two (different) calibration equations, namely those given by equations (7)
and (13). Using these, squared errors can be found for z = 0, .2, .4, .6, .8, 1.

Using the IBM 7040 at the Virginia Polytechnic Institute, and a program
generating pseudo-normal random numbers, Monte Carlo experiments of 10,000
sets each were conducted. The values X = 1.2, 2, 5, 10 were added to allow
for the case where the maximum of the controlled variable in the laboratory
is well below the maximum value for which the gauge is to be calibrated. The
values should be considered separately. The results and conclusions, however,
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will be seen to hold even for these values. Table I contains the average squared
errors for the Classical approach, Method A, their standard errors, the average
squared errors for the Inverse approach, Method B, their standard errors and
the ratios of the two averages for the given X values.

TaBLE I:

Comparison bet lassical and inverse methods of calibration

a=0 B=.5 ¢ =.1 Design: 3(z=0), 3z=1)
X=0 X=2 X=4 X=6 X=8 X=1X=12 X=2 X=5 X=10

AV. (X —Xx)2 CL. .062 .054 .052 .051 .05¢ .060 .070 .132 .135 .133
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV. (X -X)t IN. .049 .043 .041 .041 .043 .048 055 .103 .104 .104
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 125 125 128 127 130 1.28

AV.();f —X)? CL. is the average squared error using the Classical Approach, Method A.
AV.(X —X)? IN. is the average squared error using the Inverse Approach, Method B.

One can conclude from the table that the average squared error of the Classical
approach, Method A, is uniformly larger than the average squared error of
the Inverse approach, Method B, (even for X values outside the range).

In order to establish that this result does not depend on the choice of param-
eters or design, these factors will now be investigated.

COMPARISONS

The Effect of Intercept

Is the choice @ = 0 necessary for the above conclusion? Since the squared
error involves a difference in X values, the value of « should cancel out. In
order to check to see whether this was actually the case several a values were
chosen and the procedure repeated leaving the other parameters and design
unchanged. The results are given in Table II. As in Table I and in all sub-
sequent tables the averages are for 10,000 repetitions.

The values in Table II differ by no more than two standard deviations from
the corresponding values in Table I (repeated in Table IT where & = 0). It can,
therefore, be concluded that the results and conclusion indicated by Table I
are in no way effected by the choice of a value for « (the intercept of the line).

The Effects of Slope

Since the choice of intercept has no effect on the results, it was decided
to hold this constant (at « = 0) and vary the slope of the line (i.e. the 8 value).
This was done, and the results are reported in Table III.

The effect of slope can be seen to be quite significant. Note that both methods
have average squared errors which are essentially zero when 8 > 10. The
average squared error for Method B remains below .4 for all 8 (for 0 < X < 1),
whereas the average squared error for Method A becomes excessively large
for 8 < .5. It can be seen that the Classical approach, Method A, has a 19,
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TasLr II;

Comparison between classical and inverse methods of calibration: the effect of intercept

B=.5 ¢ =.1 Design: 3z =0), 3 =1)
X=0 X=2 X=4 X=6 X=8 X=1 X=1.2 X=2 X=5 X=10

a = —10
AV.(}? —X)2 CL. .061  .054 .052 .051 .056 .059 .068 .131 .130 .135
STD.AERR. .001 .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)2 IN. 048  .044 .042 .041 .045 .048 .055 .105 .103 .016
STD. ERR. .001  .001 .001 .001 .001  .001 .001 .002 .001  .002
RATIO 1.27 1.24 1.25 1.25 1.24 123 1.23 1.25 1.25 1.27
a = —2
AV. (}? —X)? CL. .062  .054 .052 .051 .054 .060 .070 .132 .135 .133
STD.AERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)? IN. .049  .043 .041 .041 .043 .048 .055 .103 .014 .104
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 125 1.25 1.28 1.27 1.30 1.28
a=0
AV.(X —X)2 CL. .062  .054 .052 .051 .054 .060 .070 .132 .135 .133
STD. ERR. .001 .001 .001 .001 .001  .001 .001 .003 .003 .003
AV.(X —X)3 IN. 049  .043 .041 .041 .043 .048 .055 .103 .104 .104
STD ERR. .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.27 1.30 1.28
a=1
AV.(X —X)? CL. .061 .054 .052 .051 .056 .059 .068 .131 .130 .135
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X2IN. .048  .044 .042 .041 045 .048 .055 .105 .103 .106
STD. ERR. .001 .001 .001 .001 .001  .001 .001 .002 .001  .002
RATIO 1.27 1.24 1.25 1.25 1.24 123 1.23 1.25 1.25 1.27
a=5
AV, (}2’ —X)* CL. .062  .054 .052 .051 .054 .060 .070 .132 .135 .133
STD.AERR. .001 .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)? IN. .049  .043 .041 041 043 .048 055 .103 .104 .104
STD. ERR. .001  .001 .001 .001 .001  .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.27 130 1.28
a =10
AV.(X —X)? CL. .061  .053 .052 .053 .054 060 .068 .128 .131 .132
STD.AERR. .001 .001 .001 .001 .001  .001 .001 .003 .003 .003
AV (X —X)® IN. .048  .043 .041 .042 .043 .048 054 .101 .100 .102
STD. ERR. .001  .001 .001 .001 .001  .001 .001 .001 .001 .001
RATIO 1.27 1.25 1.25 1.26 1.25 1.27 1.26 1.27 1.31 1.30

larger average squared error at a slope of 609, (8 = 2). The difference increases
to 6% at a slope of 45%, (8 = 1) going through 259, at 30° (8 = .5) and becoming
excessive (above 75009,) when the slope is below 11° (8 = .2).

Remark: For 8 = .2 four values of b in 10,000 were below .001 in absolute
value, while for 8 = .1 there were forty-one, and for 8 = .05 there were seventy-
nine such values. To prevent an excessively high squared error using Method A
these values were replaced with b = .001. The values for the average squared
error of Method A presented in Table III for these situations are, therefore,
lower than they should actually be. This, of course, only helps strengthen the
conclusions obtained. It should also be pointed out that in no other instance
in any table presented in this paper did this truncation have to be performed.

The conclusion, for any slope, remains unchanged. Method B has a uniform



CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION

TABLE

III:

Comparison between classical and inverse methods of calibration: effect of slope

431

a=0 o =.1 Design: 3z =0), 3 =1)
X=0 X=2 X=4 X=6 X=8 X=1 X=12 X=2X=5 X=10
B = .05
AV.(X —X) CL. 174.4 193.2 151.3 197.5 183.0 188.7 199.8 274.8 245.2 225.1
STD.AERR. 18.1 21.1 14.8 24.0 23.8 229 25.8 33.0 24.0 23.1
AV.(X —X)? IN. .347 212 144 134 215 .355 .550 2.11 2.10 2.13
STD. ERR. .005 .005 .007 .005 .006 .006 .006 .01 .01 .02
RATIO 502.6 911.8 1052.3 1473.3 850.6 531.7 363.2 130.2 116.6 105.7
g =.1
AV.(X —-X)2 CL. 128.4 93.4 99.1 111.9 138.5 142.7 135.1 267.7 293.5 315.3
STD.AERR. 19.1 12.1 14.3 17.5 18.5 20.4 20.6 34.4 36.9 42.0
AV.(X —X)? IN. 204 197 .148 .138  .199  .291 .440 1.53 1.53 1.54
STD. ERR. .005  .004 .004 .003 .005 .005 .005 .01 .01 .01
RATIO 436.9 4749 667.5 810.3 697.3 491.4 307.3 175.0 192.3 205.2
g =.2
AV.(X =X)2 CL. 16.7 10.8 15.6 16.8 22.4 24.3 45.3 108.5 93.0 128.2
STD. ERR. 6.7 3.3 4.8 6.2 8.7 7.0 15.0 28.4 224 39.1
AV.(X —X) IN. .181 141 128 127 140 177 224 597  .598  .589
STD. ERR. .006 .002 .003 .003 .003 .003 .003 .007 .009 .007
RATIO 92.1 76.7 122.3 131.8 160.1 137.3 202.2 181.7 155.5 217.4
g=.5
AV.(X —X)? CL. 062  .054 .052 .051 .05¢ .060 .070 132 135 .133
STD.AERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —-X)? IN. 049 043 .041 .041 .043 .045 .055 103 .104  .104
STD. ERR. .001  .001 .001 .001  .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 125 1.25 1.28 1.27 130 1.28
g = .75
AV.(X —X)? CL. .0252 .0230 .0221 .0222 .0229 .0256 .0285 .0527 .0528 .0540
STD. ERR. .0004 .0003 .0003 .0003 .0003 .0004 .0005 .0010 .0010 .0010
AV.(X -X)? IN. .0228 .0208 0200 .0202 .0207 .0231 .0258 .0473 .0471 .0480
STD. ERR. .0003 .0003 .0003 .0003 .0003 .0003 .0004 .0007 .0007 .0007
RATIO 1.11 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.12 1.13
g=1
AV.(X —=X)? CL. .0139 .0124 .0120 .0122 .0125 .0138 .0154 .0275 .0279 .0284
STD. ERR. .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0004 .0005 .0004
AV.(X -X)? IN. .0132 .0118 .0114 .0116 .0018 .0130 .0146 .0260 .0261 .0266
STD. ERR. .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0004 .0004 .0004
RATIO 1.06 1.06 1.06 1.06 1.05 1.06 1.06 1.06 1.07 1.06
g =2
AV.(R-X)* CL. .00342 .00308 .00299 .00292 .00317 .00335 .00376 .00681 .00678 .00697
STD.}ERR. .00005 .00004 .00004 .00004 .00004 .00005 .00005 .00010 .00010 .00010
AV.(X —X)? IN. .00337 .00304 .00295 .00288 .00313 .00332 .00373 .00676 .00672 .00689
STD. ERR. .00005 .00004 .00004 .00004 .00004 .00005 .00005 .00010 .00009 .00010
RATIO 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
g =5
AV.(X —=X)? CL. .00054 .00050 .00048 .00048 .00050 .00055 .00060 .00108 .00109 .00111
STD. ERR. .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00002 .00002 .00002
AV.(X —-X)? IN. .00054 .00050 .00048 .00048 .00049 .00055 .00060 .00108 .00108 .00110
STD. ERR. .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00002 .00002 .00002
RATIO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .100 1.00
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TasLe III- Continued
X=0 X=2 X=4 X=6 X=8 X=1 X=12 X=2 X=5 X=10

B =10

AV.(X —X)*CL. .00013 .00013 .00012 .00012 .00012 .00014 .00015 .00027 .00027 .00028
STD. ERR. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
AV.X—X)»IN. .00013 .00013 .00012 .00012 .00012 .00014 .00015 .00027 .00027 .00028
STD. ERR. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
RATIO 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 100 1.00

8 = 100

AV.(X —X)*CL. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
STD. ERR. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
AV.(® —X)?IN. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
STD. ERR. .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
RATIO 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00

smaller (or at least no larger) average squared error (even outside the range of z).

The Effect of Error Variance

Keeping the other parameters and the design the same as in the situation

TaBLE IV:

Comparison bet lassical and inverse methods of calibration: the effect of error variance

a=0 B =.5 Design: 3(z =0), 3z =1)
X=0 X=2 X=4 X=6 X=8 X=1 X=12 X=2 X=5 X=10

=0
AV.()? -X)? CL. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
STD.AERR. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AV.(X -X)? IN. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
STD. ERR. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RATIO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
o = .05
AV.(X —X)2 CL. 0140 .0125 .0121 .0119 0129 0136 .0154 .0281 .0280 .0288
STD‘AERR. .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0004 .00004 .0005
AV.(X —X)? IN. .0132  .0119 .0115 .0113 .0123 .0130 .0147 .0269 .0267 .0274
STD. ERR. .0002  .0002 .0002 .0002 .0002 .0002 .0002 .0004 .0004 .0004
RATIO 1.06 1.05 1.05 1.05 1.05 1.05 1.04 1.04 1.05 1.05
c=.1
AV.(X —X)2 CL. .062 .054 .052 .051 .054 .060 .070 132 135 133
STD.AERR. .001 .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)? IN. .049 .043 .041 .041 .043 .048 .103 .104 .104 .104
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 . .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.30 1.30 1.28
o =.2
AV.(X —=X)2 CL. 7.6 .85 .81 2.3 1.41 1.31 1.60 10.28 7.29 10.78
STD.AERR. 6.4 .18 17 1.5 .65 .27 .33 4.37 2.13 5.24
AV.(X —X)? IN. 141 116 .109 .109 .115 .138 .166 .386 .385 .382
STD. ERR. .005 .002 .002 .002 .002 .002 .002 .005 .006 .005
RATIO 53.7 7.35 7.39 20.6 12.28 9.48 9.67 26.61 18.91 28.17
e =.5
AV.(X —X)? CL. 355.2 570.7 539.4 458.5 341.4 1212.6 898.7 1494.9 2015.0 2083.6
STD.AERR. 76.7 152.0 210.2 107.9 109.7 397.3 248.6 402.5 587.2 608.5
AV.(X —X)? IN. .289 .190 .132 .139 .189 .289 438 1.533 1.520 1.530
STD. ERR. .005 .005 .003 .004 .004 .004 005 .012 .012 .012

RATIO 1229.5 3006.1 4077.8 3290.7 1798.5 4189.3 2052.4 975.0 1326.4 1362.0
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of Table I, the standard deviation of the error was varied. Table IV represents
these results.

When there is a zero error variance, both methods fit the line exactly with
no squared errors. As the error variance increases, the average squared errors
of each method increase. However, the average squared error for Method B
remains below .3 (for 0 < X < 1) while the average squared error for Method A
becomes excessive (above 1,000).

The size of the error variance, therefore, does not effect the conclusion ob-
tained previously.

It is interesting to note that the effects of slope and variance depend only
on the ratio 8/¢. This point can easily be derived and is born out in the entries
in Tables III and IV where 8/¢ = 1, 5, 10, (for 8/¢ = 1, the discrepancy is
due to the truncation carried out on the b values in the case 8 = ¢ = 0.1).

The Effect of the Number of Observations at Each Design Point

Keeping all the parameters and the design the same as in the situation of
Table I, the number of observations taken at each design point was varied.
The results are in Table V.

TasLe V:

Comparison between classical and inverse methods of calibration:
effect of the number of observations at each design point

a=0 =5 oc=.1
X=0 X=2 X=4 X=6 X=.8 X=1 X=12 X=2 X=5 X=10

2(z =0)
2(z=1)
AV.(X —X)2 CL. .075 .061 .058 .059 .063 .073 .089 .202  .200 195
STD.AERR. .002 .001 .001 .001 .001 .002 .003 .007 .007 .006
AV.(X —X)2 IN. .060 .050 .048 .049 .052 .059 .070 .144 144 .142
STD. ERR. .001 .001 .001 .001 .001 .001 .002 .004 .004 .004
RATIO 1.25 1.23 1.20 1.21 1.21 1.24 128 1.40 1.38 1.37
3(x=0)
3(z=1)
AV.( —X)? CL. 062 054 052 .051  .054 .060 .070 .132 .135 .133
STD.AERR‘ .001 .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)? IN. 049 .043 .041 .041 .043 .048  .055 .103  .104 .104
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 125 1.28 1.27 1.30 1.28
5(x =0)
5(x=1)
AV.(£ —X)? CL. 051 048  .048 047  .040 051 .055 .086 .088 .086
STD“ERR. .001 .001 .001 .001 .001 .001 .001 .001 .001 .001
AV.(X —X)? IN. .041 .038 .037 .036 .038  .042 .046 .083 .084 .083
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .001 .001 .001
RATIO 1.25 1.27 1.29 1.29 127 1.22 1.18 1.04 1.04 1.04
10(z =0)
10(z =1)
AV.(X —X)? CL. 046 043  .043  .044 043 046 .040 .064 .063 .063
STD.AERR. .001 .001 .001 .001 .001 .001 .001 .001 .001 .001
AV.(X —X)? IN. .037  .034 .033 .034 .034 .038 .043 077 077  .077
STD. ERR. .001 .001 .001 001 .001 001 001 .001 .001 .001

RATIO 1.22 1.27 1.32 1.32 1.27 120 1.14 .83 .81 .83
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From Table V it is chear that increasing the number of observations reduces
the average squared errors of both methods proportionally. The number of
observations will, therefore, not affect the conclusion already obtained.

The Effect of Design

Using the same parameters as in the situation of Table I, and still using
six observations for the calibration, the design was varied. The designs used
and the results are given in Table VI.

TaBLE VI:

Comparison between classical and inverse methods of calibration: the effect of design

a=0 B=.5 ¢=.1
X=0 X=2 X=4 X=6 X=8 X=1 X=12 X=2 X=5 X=10

3(z=0)

3(x=1)
AV.(X —X)? CL. .062  .054 .052 .051 .054 .060 .070 .132 .135 .133
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV(X —X)2 IN. .049  .043 .041 .041 .043 .048 .103 .104 .104 .104
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 125 1.28 1.30 1.30 1.28

2(z =0)

2(x=.5)

2(z=1)
AV.(X —X)z CL. .072  .061 .057 .056 .061 .072 .088 .205 .204 .210
STD. ERR. .002  .001 .001 .001 .001 .002 .002 .006 .006 .007
AV.(X —X)? IN. .049  .042 .039 .039 .042 049 .059 .132 .132 .134
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.48 1.46 1.44 1.43 1.45 1.48 1.49 155 154 1.57

1(z =0)

1(z=.2)

1(z=.4)

1(z =.6)

1(z=.8)

1(z=1)
AV.(X —X)2 CL. .096  .072 .063 .063 .075 .100 .128 .380 .382  .400
STD. ERR. .005  .002 .002 .001 .004 .008 .007 .036 .039 .047
AV.(X —X)? IN, .050 .040 .036 .036 .040 .050 .065 .172 .170 .172
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .002 .002 .003
RATIO 1.92 1.81 1.75 1.74 1.89 1.99 198 2.21 2.25 2.33

3(z=.15)

3(x =.85)
AV.(X —X)2 CL. .104  .070 .062 .061 .069 .089 .175 .581 .433  .532
STD. ERR. .017  .003 .002 .002 .002 .008 .068 .290 .144 .233
AV.(X -X)? IN. .050  .041 .037 .036 .042 .051 .065 .170 .167 .169
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
RATIO 2.07 1.71 1.70 1.69 164 1.75 2.69 3.43 2.59 3.14

The end point design, used exclusively for the previous tables, can be seen
to be the most efficient design for Method A. That is, the average squared
errors for Method A are uniformly smallest in using the end point design. Method
B, on the other hand, seems to be fairly robust to design. The average squared
errors for Method B are slightly larger at the points X = 0 and X = 1 for the
other designs, but smaller at the points X = .2, .4, .6, .8.
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The fact that the end point design is most efficient for Method A and not
most efficient for Method B only helps to strengthen the conclusion already
obtained. That is, the Inverse approach, Method B, has a uniformly smaller
(never larger) average squared error than the Classical approach, Method A.

ROBUSTNESS

In all the above situations the errors were assumed to be normally distributed.
What would be the effect of non-normal errors on the results obtained? In order
to answer this question the pseudo-normal random number generator was
replaced by a remarkable computer program (see Krutchkoff and Thomas 1966)
which, among other things, can generate pseudo-random numbers from any
Pearson distribution. These distributions are characterized by the values
of skewness

_ (Third Central Moment)®
(Variance)®

B, 17

and kurtosis

_ (Fourth Central Moment) .
(Variance)®

Be (18)

For the normal distribution, which is a Pearson distribution, 8, =0 and 38, = 3.

The Effect of Skewness

In Table VII the errors were distributed as Pearson variables with skewness
as indicated.

TasLe VII:

Comparison between classical and inverse methods of calibration: effect of skewness in the error

a=0 B=.5 o¢=.1 Design: 3@z =0), 3@z =1) B, =3
X=0 X=2 X=4 X=6 X=8 X=1 X=12 X=2 X=5 X=10

Vi = -1
AV.(X —X)2 CL. .057  .053 .050 .051 .057 .063 .071 .134 .138 .138
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)? IN. 049 .045 .041 .040 .043 .047 .053 .098 .101 .102
STD. ERR. 001  .001 .001 .001 .001  .001 .001 .002 .002 .002
RATIO 1.16 1.19 1.23 1.27 132 133 135 1.37 137 1.34
pr=0
AV.(X —X)? CL. .062  .054 .052 .051 .0564 060 .070 .132 .135 .133
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .003 .003 .003
AV.(X —X)2 IN. .049  .043 .041 .041 .043 .048 .055 .103 .104 .104
STD. ERR. .001  .001 .001 .001 .001  .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.27 130 1.28
Ve =1
AV.(}? —X)? CL. .063 .056 .051 .051 .054 .057 064 1.21 .127 122
STD. ERR. .001  .001 .001 .001 .001 .001 .001 .002 .003 .003
AV.(X —X)? IN. .048  .043 .040 .042 .045 049 .056 .106 .111  .107
STD. ERR. .001  .001 001 .001 .001 .001 .001 .001 .002 .002

RATIO 1.33 1.31 1.27 1.23 120 1.16 1.14 1.14 1.14 1.13
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For the Inverse approach the variation is less than two standard errors
from the normal. Although the Classical approach demonstrates a slightly
higher variation than this the results do not indicate any change in the con-
clusions obtained for normal errors.

The Effect of Kurtostis

In Table VIII the errors were distributed as Pearson variables with kurtosis
as indicated.

TasLeE VIII:

Comparison Between Classical and Inverse Methods of Calibration: Effect of Kurtosis in the Error

a =08 =.50 =.1Design:3(z =0),3(z =1 =0
X=0X=2X=4X=6 X=8X=1X=12X=2X=5X

10

“gr g =17
AV. (X — X)2CL. .059 .054 .051 .051 .055  .060 .066 .126 130 126

STD. ERR, .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
AV. ()Af — X)?IN. .049 .044 .041 .042 .044 .049 .055 .106 .109 .108
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.21 1.24 1.24 1.24 1.23 1.23 1.21 1.19 1.19 1.17
B =2
AV. ()2' — X)tCL. .060 .054 .051 .051 .055 .060 .067 125 131 127
SRD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 .003 .003
AV. ()2' — X)2IN. .049 .044 .041 .041 .044 .048 .055 .104 .108 .109
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .001 .002 .002
RATIO 1.22 1.24 1.24 1.24 124 1.23 1.22 1.21 1.21 1.19
B =3
AV. (X —X):CL. .062 .054 .052 .051  .054 .060 .070  .132 .135  .133
STD. ERR. .001 .001 .001 .001 .001 .001 .003 .003 .003 .003
AV, ()? — X)?IN. .049 .043 .041 .041 .043 .048 .055 .103 .104 .104
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .002 .002 .002
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.27 1.30 1.28
B =4
AV, (Ié — X)2CL. .062 .055 .051 .051 .056 .061 .067 .128 135 132
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .003 .004 .004
AV. ()2' — X)*IN. .048 .043 .040 .040 .044 .048 .054 .099 .104 .103
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .001 .002 .002
RATIO 1.28 1.26 1.26 1.26 1.26 1.26 1.26 1.29 1.30 1.28

The effect of kurtosis on either method is not significant anywhere in this
table. It is interesting to note the lack of significance even when the distribution
is “U” shaped (8, = 1.7).

The Effect of a Quadratic Term

Ott (1966), working with Method A only, shows that if one designs in from
the end points, the linear calibration given by equation (7) is a fair representa-
tion for the calibration even when the true model is quadratic e.g.

y=a+ X + 6X° + e (19)
The values in Table IX were obtained by adding positive quadratic terms

(values for 6) to the model, obtaining the corresponding observations and then
using equations (7) and (13) to estimate X as if the model were linear.
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TaBLe IX:
Comparison Between Classical and Inverse Methods of Calibration: The Effect of a Positive Quadratic Term

a=0 B=.5 ¢ =.1 Design: 3(z =.15), 3(z = .85)
X=0X=.2 X=4 X=6 X=8X=1X=12X=2X=52X-=10

=0
AV. (X — X)?CL. .104 .070 .062 .061 .069 .089 175 .581  .433 .532
STD. ERR. .017 .003 .002 .002 .002 .008 .068 290 .144 .233
AV. (X — X)*IN. .050 .041 .037 .036 .042 .051 .065 170 167 .189
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .003  .003 .003
RATIO 2.07 1.711 1.70 1.69 1.64 1.75 2.69 3.43 2.59 3.14
0 =.2
AV. (X — X)2CL. .0356 .0302 .0283 .0269 .0292  .0397  .0688 .647  .655 .651
STD. ERR. .0007  .0005 .0005 .0004 .0005 .0008  .0016 .010 .010 .010
AV. (X - X*IN. .0310 .0231 .0217 .0220 0237 .0276  .0381 321 .326 .323
STD. ERR. .0005  .0004 .0003 .0003 .0003  .0005  .0009 .005 .005 .005
RATIO 1.15 1.31 1.31 1.22 1.23 1.44 1.81 2.02 2.01 2.01
6 =.5
AV. (X — X)?CL. .0187 .0141 .0159 .0149 .0140 .0218 .0614 1.315 1.317 1.323
STD. ERR. .0003  .0002 .0002 .0002 .0002  .0004 .0008 .008  .008 .009
AV. (X — X)*IN. .0200 .0121 .0137 .0139 .0131  .0165 .0423 1.017 1019 1.024
STD. ERR. .0003  .0002 .0002 .0002 .0002  .0003  .0006 .007  .007 .007
RATIO .94 1.16 1.16 1.07 1.07 1.32 1.45 1.29 1.29 1.29
0 =1
AV. (X — X)?CL. .0133 .0064 .0112 .0106 .0064 .0151 .0728 2.113 2.116 2.120
STD. ERR. .0002  .0001 .0001 .0001 .0001  .0002  .0006 .007  .007 .007
AV. (X — X)*IN. .0146 .0058 .0103 .0104 .0064 .0125 .0616 1.918 1.920 1.924
STD. ERR. .0002  .0001 .0001 .0001 .0001  .0002  .0005 .007  .007 .007
RATIO .91 1.10 1.08 1.01 1.00 1.21 1.18 1.10 1.10 1.10
0 =5
AV. (£ — X)2CL. .0139  .0129 .0108 .0107 .0013 .0140 .1124 3.748 3.749 3.750
STD. ERR. .0001  .0000 .0000 .0000 .0000 .0001  .0002 .003  .003 .003
AV. (X — X)*IN. .0140 .0126 .0108 .0107 .0013  .0137 .1112 3.725 3.726 3.727
STD. ERR. .0001  .0000 .0000 .0000 .0000 .0001  .0002 .003  .003 .003
RATIO .99 1.03 1.00 1.00 1.00 1.02 1.01 1.01 1.01 1.01
6 =10
AV. (£ — X)?CL. .0149 .0107 .0116 L0115 .0108 .0149 .1226 4.106 4.107 4.108
STD. ERR. .0000  .0000 .0000 .0000 .0000  .0000 .0001 .002  .002 .002
AV. (X — X)?IN. .0149 .0106 .0115 0115 .0109  .0148  .1222 4.100 4.100 4.100
STD. ERR. .0000  .0000 .0000 .0000 .0000  .0000 .0001 .002  .002 .002
RATIO 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Both Method A and B tend to improve (smaller average squared errors)
for larger positive quadratic terms. At one point (X = 0) and for some positive
quadratic terms (.5 < 6 < 5) the values for the average squared error of Method
A become slightly lower than that of Method B. Thus, one cannot say that
Method B is uniformly more robust, unless one eliminates the point X = 0.
However, Method B still has, in general, a smaller average squared error. It
should also be pointed out that unless one suspected a positive quadratic term
one would not, using Method A, design away from the end points. Method B,
however, appears to be robust to design and, therefore, one could protect
against a quadratic term without sacrificing mean squared error.

It seems intuitively unreasonalbe that the methods should have decreasing
average squared errors when the ignored quadratic term increases. However,
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the positive quadratic term is in effect increasing the slope of the approximating
line. From Table III we see that the squared error decreases with increasing
slope. Evidently the increase in squared error due to the quadratic term is
more than offset by the decrease caused by the increase in effective slope.

If this is the case, then both methods should have an increasing average squared
error when the effective slope is decreased. This can be checked by introducing
a negative quadratic term. Table X gives the results of ignoring a negative
quadratic term.

As was anticipated, the average squared error of both methods increased
as the magnitude of the negative quadratic term increased. The average squared
errors for Method B remained relatively small (no larger than 4for0 < X < 1)
while the average squared errors for Method A became excessive (over 15)

TasrLe X:

Comparison Between Classical and Inverse Methods of Calibration: The Effect of a Negative Quadratic Term

a=0 B=.5 ¢ =.1 Design: 3(z =.15), 3(z = .85)
X=0X=2 X=4 X=6 X=8X=1X=12X=2X=52X-=10

6 =0
AV. (R — X)2CL. .104 .070 .062 .061 .069 .089 175 .582 433 .532
STD. ERR. .017 .003 .002 .002 .002 .008 .068 .201 144 .233
AV. (X — X)?IN. .055 .041 .037 .036 .042 .051 .065 170 167 .169
STD ERR. .001 .001 .001 .001 .001 .001 .001 .003  .003 .003
RATIO 2.07 1.71 1.70 1.69 1.64 1.75 2.69 3.43 2.59 3.14
6 = —.01
AV. (X — X):CL. .206 .086 .076 .075 .075 .137 561  2.148 1.187 1.774
STD. ERR. 112 .014 .012 .013 .003 .052 448 1.854 896 1.478
AV. (X - X?IN. .052 .042 .038 037 .043 .053 .068 .190 188 .190
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .003  .003 .003
RATIO 3.99 2.04 2.01 2.04 1.73 2.61 822 11.29 6.33 9.37
6 = —.05
AV. (X — X)2CL  .136 .098 .083 .080 .096 111 .161 .405 371 .403
STD. ERR. .008 .007 .003 .002 .003 .004 .017 .055  .028 .046
AV. (X - X)?IN. .058 .048 .043 .042 .049 .062 .085 326 .323 .323
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .003  .003 .003
RATIO 2.36 2.04 1.95 1.93 1.96 1.79 1.89 1.24 1.15 1.25
6 =-—.1
AV. (£ — X)*CL. 2.46 15.07 4.22 174 .302 742 757 533 9.65 14.82
STD. ERR. 1.96 14.73 4.00 .034 .082 .549 .489 4.17 8.71 13.44
AV. (X — X)?IN. .067 .057 .050 .048 .057 077 117 .656  .651 .650
STD. ERR. .001 .001 .001 .001 .001 .001 .001 .004  .004 .004
RATIO 36.70 266.9 84.37 3.63 5.26 9.66 6.47 8.13 14.81 22.80
6= —.2
AV. (® — X)2CL. 17.25 4.06 8.04 10.03 9.68 6.76 10.33 6.49 15.44 5.99
STD. ERR. 7.42 1.16 4.39 6.26 4.58 3.05 4.30 2.46 8.20 2.16
AV. (X — X)2IN. .093 .079 .069 .062 .079 126 242 2.166 2.156 2.147
STD. ERR. .002 .001 .001 .001 .002 .002 .002 .007  .007 .007
RATIO 186.1 51.3 117.5 162.7 123 .2 53.6 42.6 3.00 7.16 2.79
6 =—.5
AV. (£ — X)*CL. 257.1 161.3 222 .4 235.5 177.1 241.6 653.2 16678 16719 16152
STD. ERR. 29.9 17.5 23.2 26.0 20.1 27.6 57.1 1166 1175 1122
AV. (X - X)?2IN. .330 155 .095 .093 154 .341 .732 8.300 8.264 8.286
STD. ERR. .004 .006 .009 005 003 .009 .012 240 .234 .237

RATIO 778 1040 2337 2534 1153 708 892 2010 2023 1949
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for 8§ < —.1. Therefore, except for very few points, where Method A had a
very slightly smaller average squared error than Method B, one can conclude,
for the misclassification problem, that the Inverse approach, Method B, has
a smaller average squared error than the Classical approach, Method A.

CONCLUSION

The Classical approach to the linear calibration problem is compared with
the Inverse approach by Monte Carlo methods. Although a mathematical
proof is not given the Monte Carlo results are such that one can safely conclude
that the Inverse approach to the calibration problem has a uniformly smaller
mean squared error than the Classical approach.

It is evident that this conclusion opens more questions than it settles. For
example, how do these methods compare using other criteria such as expected
absolute deviation or expected bias? The answer to this is presently being
assembled by the author.

Since the usual method, the Classical approach, is clearly not optimal for
the calibration problem then what is? This question is being investigated
by the author and his colleagues but at the time of this writing no solution
is available.
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