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Classical and Inverse Regression 

Methods of Calibration 


R. G. KRUTCHKOFF 
Virginia Polytechnic Institute 

The Classical and Inverse least squares methods of linear calibration are com- 
pared by Monte Carlo methods. The Inverse approach is found to be superior to the 
Classical approach from a mean squared error point of view. 

Consider the problem of calibrating an instrument, say a pressure gauge. 
Let us assume that i t  has already been determined that the gauge response 
is a linear function, that is, the increase in gauge marking is proportional to 
the increase in pressure. In order to calibrate the gauge, one subjects it to two 
or more controlled pressures and notes the gauge markings. Using these data, 
the calibration parameters are calculated, and the guage is calibrated. The 
gauge then is used to determine unknown pressures simply by reading the 
calibrated markings. 

The problem of calibration is quite general, and could have been given in 
terms of measuring temperature, acidity, salinity, etc. The pressure gauge 
example will, however, be used throughout the introduction as an illustration. 

If one uses x to represent the controlled variable (the pressure) and y the 
measured variable (the gauge marking) the relation between x and y can be 
given by 

y = a + P x + e  (1) 

and slope), and where e represents the reading error. Two methods of calibration 
will be considered and compared in the following sections. 

Method A:  The Classical Approach. 

Using the model given by (1) with N values of x (not necessarily different 
values), and independent identically distributed errors with zero mean, one 
can write the model as 

yi = a + P x i  + e i  i = 1 , 2 ,  - - ., N .  (2) 

If we let 
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are the parameters in the linear relationship (i.e. the intercept ,!?andawhere 
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N 


and 

then the least squares estimators b of P and a of a are 

and 

a = - bz .  

The least squares line is 

and the corresponding calibration equation becomes 

If one now uses the gauge to measure an unknown pressure (say X) from a 
gauge reading Y the estimate for the pressure is 

Method B: The Inverse Approach. 

The model (1) can be rewritten so that it becomes 

x = y + 6 y + e 1  

where 

Y = --
a 1 and = - 5 .  
P '  P' = a t  

Considering the same data as in Method A the model may be written 

The least squares estimators d of 6 and c of y are 

and 
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The calibration equation then is 

x = c + dy. (12) 

If one now reads Y on the gauge, the estimate of the unknown pressure is 

2 = c + dY. (13) 

The estimates given by equations (7) and (13) in general will not be the same. 
One has, therefore, to choose between the two. 

In  an invited paper presented to the American Statistical Association in 
Detroit on December 29, 1938, Dr. C. Eisenhart discussed the problem of 
choosing between these methods. In the subsequent paper (Eisenhart (1939)) 
he says, 

I t  does not seem to be generally realized that the Jitting should be done in 
terms of the deviations which actually represent 'error.' Thus when the 
research worker selects the X values in advance, and holds x to these values 
without error, and then observes the corresponding y values, the errors are 
in the y values, so that even if he i s  interested in using observed values of Y 
to estimate X, he should nevertheless fit P = a + bX and then use the in-
verse of this relation to estimate X, i.e. X = ( P  - a)/b,  with the best avail- 
able estimate of Y substituted for P. 

Eisenhart then presents two analysis of variance tables. The table he places 
on the left is the usual analysis of variance table, while the one he places on 
the right is a corresponding analysis which assumes that y is controlled and 
x is measured with error. He then states, 

" I n  short, remembering that we are dealing with the case in which the values 
of X are chosen by the research worker and only the values of Y are subject 
to error, the relation between X and Y being as in (1) [a, +a,X + a2Y= 01 
or its equivalent form ( 2 )  [Y = a + OX], we see that the analysis of vari- 
ance table on the left separates ( y  - g)2into portions whose meanings 
are clear." 

He then says "The analysis of variance table on the right, on the other hand, 
can be misleading if i t  is interpreted hastily." Without any further comparisons 
he concludes; 

"Briejly stated, when the values of x have been selected by the research worker 
and the corresponding y values observed, the line obtained by minimizing 

(X - P)' [he means (X -Z)'] i s  meaningless, and (4) [P=a +bX] 
i s  accordingly the only correct estimate of the postulated linear relationship 
between X and Y ,wherefore,ifit i s  desired to reason from Y to X this must 
be done by means of X = (P- a)/b,  namely (4) solved for X." 

After the appearance of this article ilfethod B, unfortunately, seems to have 
been put aside. Subsequent texts and journal articles which deal with the 
calibration problem use Method A exclusively. See, for example, Bennett and 
Franklin (1954)) Mandel and Linning (1957)) Mandel (1958)) Williams (1959)) 
Brownlee (1960)) Linning and Mandel (1964), and Ott (1966). S' lnce no numer- 
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ical comparison of these two methods was made by Eisenhart it is now proposed 
that the problem of deciding between them be reopened. 

As a basis for the criterion for choosing the better method of calibration, 
we will use the standard criterion of mean squared error 

Since 2 is a function of the observations y, , . - , y, and Y, the expectation 
must be with respect to these random variables. The mean squared error is 
then a function of the unknown pressure X. One could now require, for the 
criterion, that the mean squared error be smallest with respect to some weighting 
function (say f(x)) giving the criterion as 

Another possible criterion, still using the mean squared error, is to choose the 
method with the smallest maximum mean squared error, that is, choose the 
method which minimizes the 

max ~ ( 2- X)'. (16)
X 


Other criteria could also be used. This discussion, however, will turn out to 
be quite academic since the results will indicate that Method B has a smaller 
mean squared error than Method A for all X. This being the case, any criterion 
based on the mean squared error will favor the Inverse approach, Method B, 
over the Classical approach, Method A. I n  the following sections, the mean 
squared errors for Method A and for Method B will be compared using Monte 
Carlo methods. 

As a starting point, let us consider the model of equation (1) i.e. y = a + 
px + E with a = 0 and = .5 (a line through the origin with a slope of 30"). 
Since the range will enter into the problem merely as a scale factor, let us 
assume that the range of x is [0, I]  and that the standard deviation of the error 
is 10% of the range (i.e. cr = .I). 

Imagine designing the calibration experiment so that there are three observa- 
tions a t  each of the end points (x = 0, x = I). After obtaining six values for 
y one can use equations (3) and (4) to obtain b and a and equations (10) and 
(11) to obtain d and c. One can now use Method A and Method B and obtain 
two (different) calibration equations, namely those given by equations (7) 
and (13). Using these, squared errors can be found for x = 0, .2, .4, .6, .8, 1. 

Using the IRM 7040 a t  the Virginia Polytechnic Institute, and a program 
generating pseudo-normal random numbers, Monte Carlo experiments of 10,000 
sets each were conducted. The values X = 1.2, 2, 5, 10 were added to allow 
for the case where the maximum of the controlled variable in the laboratory 
is well below the maximum value for which the gauge is to be calibrated. The 
values should be considered separately. The results and conclusions, however, 
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will be seen to hold even for these values. Table I contains the average squared 
errors for the Classical approach, Method A, their standard errors, the average 
squared errors for the Inverse approach, Afethod B, their standard errors and 
the ratios of the two averages for the given X values. 

T A ~ L EI: 

Comparison between classical and inuerse methods of calibration 

a = O  B =  .5 o = . I  Design: 3 ( x = 0 ) ,  3 ( x = 1 )  

X=O X = . 2  X = . 4  X = . 6  X = . 8  X = l  X = 1 . 2  X = 2  X = 5  X=10  

AV. ( 8 - X ) %  CL. .062 .054 ,052 .051 .054 ,060 .070 .I32 ,135 .I33 
STD. ERR. ,001 ,001 .001 .001 .001 ,001 ,001 .003 ,003 .003 
AV. ( 8  -x)¶ IN. .049 ,043 .041 .041 .043 .018 ,055 .I03 ,104 .I04 
STD. ERR. .001 .001 ,001 .001 .001 .001 .001 .002 .002 .002 
RATIO 1 .28  1 .26  1.25 1 .25  1 .25  1.25 1 .28  1 .27  1 .30  1 .28  

A V . ( ~-X)1 CL is the average squared error using the Classical Approach. Method A 
AV.(X -XI' IN. is the average squared error using the Inverse Approach, Method B. 

One can conclude from the table that the average squared error of the Classical 
approach, Method A, is uniformly larger than the average squared error of 
the Inverse approach, Method B, (even for X values outside the range). 

In order to establish that this result does not depend on the choice of param- 
eters or design, these factors will now be investigated. 

T h e  E$ect of Intercept 

Is  the choice a = 0 necessary for the above conclusion? Since the squared 
error involves a difference in X values, the value of a should cancel out. In  
order to check to see whether this was actually the case several a values were 
chosen and the procedure repeated leaving the other parameters and design 
unchanged. The results are given in Table 11. As in Table I and in all sub- 
sequent tables the averages are for 10,000 repetitions. 

The values in Table I1 differ by no more than two standard deviations from 
the corresponding values in Table I (repeated in Table I1where a = 0). I t  can, 
therefore, be concluded that the results and conclusion indicated by Table I 
are in no way effected by the choice of a value for a (the intercept of the line). 

T h e  E f e c t s  of Slope 

Since the choice of intercept has no effect on the results, it was decided 
to hold this constant (at a = 0) and vary the slope of the line (i.e. the P value). 
This was done, and the results are reported in Table 111. 

The effect of slope can be seen to be quite significant. Note that both methods 
have average squared errors which are essentially zero when P > 10. The 
average squared error for Method B remains below .4 for all P (for 0 5 X 5 l),  
whereas the average squared error for Method A becomes excessively large 
for /3 < .5. It can be seen that the Classical approach, Method A, has a 1% 
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TABLE11; 

Comparison between classical and inuerse methods of calibration: the effect of intercept 

8 = .5 r = .l Design: 3(x = 0 ) ,  3(x = 1) 

x=O X = . 2  X = . 4  X = . 6  X = . 8  X = l  X=1 .2  X = 2  X = 5  X=10 

a = -10 


A V . ( ~-XI2 CL. 

STD. ERR. 

AV.(% -X)z IN. 

STD. EILR. 

RATIO 


or = -2 


AV. (2-X)z CL. 

STD.*ERR. 

AV.(X-X)"IN.
STD. ERR. 
RATIO 

a = O  


AV. (2-X)z CL. 

STD. ERR. 

AV.(* -X)*  IN. 

STD ERR. 

RATIO 


a =  1 


A V . ( ~-X)Z CL. 

STD. ERR. 
A V . ( ~-XV IN. 
STD. ERR. 
RATIO 

n = 5  


AV.(2-X)' CL. 

STD. ERR. 

A V . ( ~-X)z IN. 

STD. EILR. 

RATIO 


a = 10 


AV.(% -X)Z CL. 

STD;ERR. 
AV (x-X)' IN. 

STD. EILIL. 

RATIO 


larger average squared error a t  a slope of 60% (P = 2). The difference increases 
to 6% a t  a slope of 45% (P = 1) going through 25% a t  30" (P = .5) and becoming 
excessive (above 7500%) when the slope is below 11" (P = .2). 

Remarl;: For P = .2 four values of b in 10,000 were below .001 in absolute 
value, while for P = .I there were forty-one, and for f l  = .05 there were seventy- 
nine such values. To prevent an excessively high squared error using Method A 
these values were replaced wit,h b = .001. The values for the average squared 
error of Method A presented in Table I11 for these situations are, therefore, 
lower than they should actually be. This, of course, only helps strengthen the 
conclusions obtained. It should also be pointed out that in no other instance 
in any table presented in this paper did this truncation have to be performed. 

The conclusion, for any slope, remains unchanged. Method B has a uniform 
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Comparison between classical and inverse methods of calibration: effect of slope 

rr = 0 o = .l Design: 3(z = O), 3(x = 1) 

8 = .05 

A V . ( ~-X)z CL. 174.4 193.2 151.3 197.5 183.0 188.7 199.8 274.8 245.2 225.1 
STD.AEILIL. 18.1 21.1 14.8 24.0 23.8 22.9 2 5 8  33.0 24.0 23.1 
AV.(X -X)z IN. ,347 ,212 ,144 .I34 ,215 .355 .550 2.11 2.10 2.13 
STD. ERR. ,005 ,005 .007 ,005 ,006 ,006 ,006 .01 .01 .02 
RATIO 502.6 911.8 1052.3 1473.3 850.6 531.7 363.2 130.2 116.6 105.7 

A V . ( ~ - X ) ~ C L ,  128.4 93.4 99.1 111.9 138.5 142.7 135 1 267.7 293.5 315.3 
STD+RR. 19.1 12.1 14.3 17.5 18 5 20.4 20.6 34.4 36.9 42.0 
AV.(X -X)z IN. .294 .I97 ,148 .I38 .I99 ,291 ,440 1.53 1.53 1.54 
STD. ERR. .005 ,004 004 ,003 .005 ,005 .005 .01 .01 .01 
RATIO 436.9 474.9 667.5 810.3 697.3 491.4 307.3 175 .O 192.3 205.2 

AV.& -X)z CL. 16.7 10.8 15.6 16.8 22.4 24.3 45.3 108.5 93.0 128.2 
STD.-ERR. 6.7 3 .3  4 .8  6.2 8 .7  7.0 15.0 28.4 22.4 39.1 
AV.(X -X), IN. ,181 .I41 ,128 ,127 ,140 .I77 .224 ,597 ,598 .589 
STD. ERR. ,006 ,002 ,003 .003 .003 ,003 .003 .007 .009 .007 
RATIO 92.1 76.7 122.3 131.8 160.1 137.3 202.2 181.7 155.5 217.4 

AV. ( 2  -XI' CL. ,062 ,054 ,052 .051 ,054 ,060 ,070 ,132 ,135 .I33 
STD.-ERR. ,001 001 .001 ,001 ,001 ,001 ,001 .003 ,003 .003 
AV.(X -X)2 IN. ,049 ,043 .041 ,041 .043 ,045 .055 ,103 ,104 ,104 
STD. ERR. ,001 ,001 ,001 .001 ,001 001 ,001 002 .002 ,002 
RATIO 1.28 1.26 1.25 1.25 1.25 1.25 1.28 1.27 1.30 1.28 

A V . ( ~  CL. ,0230 ,0222 .0256 ,0527 ,0540-X)2 .0252 .0221 .0229 .0285 ,0528 
S T D T R R .  .0004 .0003 ,0003 ,0003 .0003 .0004 ,0005 ,0010 .0010 .0010 
AV. (X -X)z IN. .0228 .0208 ,0200 ,0202 ,0207 ,0231 .0258 .0473 ,0471 ,0480 
STD. ERR. .0003 ,0003 0003 ,0003 ,0003 .0003 ,0004 ,0007 ,0007 .0007 
RATIO 1.11 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.12 1.13 

A V . ( ~ - X ) ~ C L .  ,0139 .0124 .0120 ,0122 .0125 .0138 ,0154 .0275 .0279 ,0284 
STD.EILIL. .0002 ,0002 .0002 ,0002 ,0002 .0002 .0002 .0004 ,0005 ,0004 
AV.(X -X)Z IN. ,0132 .0118 ,0114 ,0116 .0018 ,0130 ,0146 .0260 ,0261 ,0266 
STD. ERR. ,0002 .0002 .0002 .0002 ,0002 ,0002 .0002 ,0004 .0004 ,0004 
RATIO 1.06 1.06 1.06 1.06 1.05 1.06 1.06 1.06 1.07 1.06 

A V . ( ~ - X ) ~ C L .  ,00342 ,00308 .00299 ,00292 ,00317 .00335 .00376 .00681 .00678 ,00697 
STD.*ERR. .00005 .00004 .00004 .00004 .00004 .00005 .00005 .00010 .00010 .00010 
AV.(X-XI'IN. .00337 00304 ,00295 .00288 ,00313 .00332 ,00373 .00676 00672 .00689 
STD. ERR. .00005 .00004 .00004 .00004 .00004 .00005 .00005 .00010 .00009 .00010 
RATIO 1.01 1.01 1.01 1.01 1 0 1  1.01 1.01 1.01 1.01 1.01 

A V . ( ~ - X ) ~ C L .  .00054 .00050 .00048 .00048 .00050 ,00055 .00060 .00108 ,00109 .00111 
STD.-ERR. .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00002 .00002 .00002 
AV.(X-XI'IN. .00054 .00050 ,00048 .00048 ,00049 ,00055 ,00060 .00108 .00108 ,00110 
STD. ERR. .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00002 .00002 .00002 
RATIO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .lo0 1.00 
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TABLE111- Continued 

x = o  ~ = . 2  X = , 4  X =  6 ,Y=.8 X = l  x = 1 . 2  X = 2  x '=5 X=10 

0 = 10 

A V . ( ~-x)' CL. ,00013 .00013 ,00012 .00012 ,00012 .00014 ,00015 .00027 ,00027 ,00028 
STD.EILIL. .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO 
AV.(X-X)'IN. .00013 ,00013 ,00012 ,00012 ,00012 00014 ,00015 ,00027 .00027 ,00028 
STD. ERR. ,00000 .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO 
RATIO 1.00 1 0 0  1.00 1.00 1.00 1.00 1.00 1 0 0  1.00 1 0 0  

8 = 100 

A V . ( ~  -X)ZCL. .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo 
STD.AEILIL. .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .00000 .OOOOO .OOOOO .OOOOO 
AV.(X -X)zIN. .00000 ,00000 ,00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 
STD. ERR. .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO .OOOOO 
RATIO 1.00 1.00 1.00 1 0 0  1.00 1.00 1.00 1.00 1.00 1.00 

smaller (or at least no larger) average squared error (even outside the range of 2). 

The Eflect of Error Variance 

Keeping the other parameters and the design the same as in the situation 

TABLEIV: 

Comparison between classical and inoerse methods of calibration: the effect of error aa~iance 

a = 0 0 = .5 Design: 3(x = O), 3(x = 1) 

X=O X = . 2  X = . 4  X = . 6  X = . 8  X = l  X = 1 . 2  X = 2  X = 5  X=10 

c = o  

AV.(%-x)~CL. 0.0 0 .0  0 .0  0 0  0.0 0 .0  0.0 0 .0  0 .0  0 . 0  
STD.AERR. 0 .0  0 .0  0 .0  0 0  0 .0  0.0 0 .0  0 . 0  0 .0  0.0 
AV.(X-x)zIN. 0 .0  0 .0  0 .0  0 0  0 .0  0 .0  0 0  0.0 0 .0  0 .0  
STD. ERR. 0 .0  0 0  0 . 0  0.0 0 0  0 .0  0 . 0  0 .0  0 .0  0.0 
RATIO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

o = .05 

A V . ( ~ - X ) ~ C L .  ,0140 ,0125 .0121 ,0119 0129 ,0136 .0154 ,0281 .0280 ,0288 
STD.*EILIL. ,0002 ,0002 .0002 ,0002 .0002 ,0002 .0002 ,0004 .00004 ,0005 
AV.(X-X)z IN. ,0132 ,0119 ,0115 ,0113 ,0123 ,0130 ,0147 .0269 .0267 ,0274 
STD. EILR. ,0002 .0002 ,0002 ,0002 ,0002 ,0002 ,0002 .0004 .0004 .0004 
RATIO 1.06 1.05 1.05 1.05 1 0 5  1.05 1.04 1.04 1.05 1.05 

AV.(* -X)Z CIA. .062 ,054 ,052 .051 ,054 ,060 ,070 .I32 ,135 .I33 
STD. ERR. .001 ,001 ,001 .001 .001 ,001 .001 ,003 ,003 .003 
AV.@ -XI' IN. ,049 .043 ,041 .041 ,043 ,048 ,103 ,104 .I04 ,104 
STD. EILIL. ,001 ,001 .001 .001 .001 .001 ,001 .002 ,002 .002 
RATIO 1.28 1 2 6  1.25 1.25 1.25 1.25 1.28 1.30 1.30 1.28 

c = .2 

A V . ( ~-X)2 CL. 

STD. EILIL. 

A V . ( ~ 
-X)* IN. 

STD. ERR. 

RATIO 


c = .5 


AV. (2-XI' CL. 

STD. ERR. 

A V . ( ~-X)* IN. 

STD. ERR. 

RATIO 
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of Table I ,  the standard deviation of the error was varied. Table IV represents 
these results. 

When there is a zero error variance, both methods fit the line exactly with 
no squared errors. As the error variance increases, the average squared errors 
of each method increase. However, the average squared error for Method B 
remains below .3 (for 0 _< X _< 1) while the average squared error for Method A 
becomes excessive (above 1,000). 

The size of the error variance, therefore, does not effect the conclusion ob- 
tained previously. 

I t  is interesting to note that the effects of slope and variance depend only 
on the ratio P/u. This point can easily be derived and is born out in the entries 
in Tables I11 and IV where ,@/a = 1, 5, 10, (for ,8/u = 1, the discrepancy is 
due to the truncation carried out on the b values in the case P = u = 0.1). 

The Effect of the Number of Obseruations at Each Design Point 

Keeping all the parameters and the design the same as in the situation of 
Table I ,  the number of observations talien a t  each design point was varied. 
The results are in Table V. 

Comparison between classical and inverse methods of calibration: 
effect of the number of observations at each design point 

2(x =O) 

Z ( z = l )  


.4V.(5? -X)2  CL. 

STD.ERR. 
AV.(X -X)2 IN. 

STD. ERR. 

RATIO 


3 ( z  = 0 )  

3 ( z  = 1 )  


A V . ( ~- X ) z  CL. 

STD.AEIm. 
AV.(X -XI2 IN. 

STD. ERR. 

RATIO 


5 ( z  = 0 )  

5 (x  = 1 )  


A V . ( ~ ?-X)2 CL. 

STD.ERR. 
AV.(X -X)2 IN. 

STD. ERR. 

RATIO 


10(z  =O) 

10(x = 1 )  


A V . ( ~ ?-X)2 CL. 

STD.AERR. 
AV.(X -X)2 IN. 

STD. ERR. 

RATIO 
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From Table V i t  is chear that increasing the number of observations reduces 
the average squared errors of both methods proportionally. The number of 
observations will, therefore, not affect the conclusion already obtained. 

The Effect of  Design 

Using the same parameters as in the situation of Table I, and still using 
six observations for the calibration, the design was varied. The designs used 
and the results are given in Table VI. 

TABLEVI: 

Comparison between classical and inuerse methods of calibration: the effect of design 

a = O  j 3 = . 5  8 z . 1  

X=O X = . 2  X = . 4  X = . 6  X = . 8  X = l  X = 1 . 2  X = 2  X = 5  X = 1 0  

3 (z =O) 
3(2=1)  


A V . ( ~-XI2 CL. 

STD. ERR. 

A V ( ~  IN.
-X)2
STD. ERR. 

RATIO 


Z(2 =O) 

2(2 = .5) 

2(z =1) 


A V . ( ~-X)Z CL. 

STD. ERR. 

A V . ( ~-xj2 IN. 

STD. ERR. 

RATIO 


l (2  =O) 

l ( 2 = .2) 

l ( 2 = .4) 

1(x = .6) 

1 ( ~ =.8) 

l ( z = l )  


A V . ( ~-X)2 CL. 

STD.-ERR. 

AV.(X -XI2 IN. 

STD. ERR. 

RATIO 


3(2 = .15) 

3(z = .85) 


A V . ( ~-X)z CL. 

STD.AERR. 
AV.(X -X)2 IN. 
STD. ERR. 
RATIO 

The end point design, used exclusively for the previous tables, can be seen 
to be the most efficient design for Method A.  That is, the average squared 
errors for Method A are uniformly smallest in using the end point design. Method 
B, on the other hand, seems to be fairly robust to design. The average squared 
errors for Method B are slightly larger a t  the points X = 0 and X = 1for the 
other designs, but smaller a t  the points X = .2, .4, .6, .8. 
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The fact that the end point design is most efficient for dlethod A and not 
most efficient for Method B only helps to strengthen the conclusion already 
obtained. That is, the Inverse approach, Method B, has a uniformly smaller 
(never larger) average squared error than the Classical approach, AIethod A. 

In  all the above situations the errors were assumed to be normally distributed. 
What would be the effect of non-normal errors on the results obtained? In order 
to answer this question the pseudo-normal random numl~cr generator was 
replaced by a remarkable computer program (see Iirutchkoff and Thomas 1966) 
which, among other things, can generate pseudo-random numbers from any 
Pearson distribution. These distributions are characterized by the values 
of skewness 

(Third Central M ~ m e n t ) ~  
PI = 

(Var ian~e)~  

and liurtosis 

(Fourth Central Moment) 
P 2  = (18)

(Variance) 

For the normal distribution, which is a Pearson distribution, P, =0 and P, = 3. 

T h e  Eflect of Skewness 

In  Table VII the errors were distributed as Pearson variables with skewness 
as indicated. 

TAULEVII:  

Comparison between classical and inaerse methotla of calzbration: efect of sliewness i n  the error 

a =O 0 = 5 o = . 1  Design: 3(2 = 0 ) ,  3(2 = 1 )  0%= 3  

X=O X = . 2  X = . 4  X = . 6  X = . 8  X = l  X = l  2  X = 2  X = 5  X = 1 0  

./z = -1 

A V . ( ~-X)2 CL. 

STD. ERR. 

AV (-2-XI2 IN. 

STD.ERR. 

RATIO 


01 = 0 

A V . ( ~-X)Z CL. 

STD. ERR. 

A V . ( ~-X)2 IN. 

STD. ERR. 

RATIO 


./a = 1 


av.(f-X)Z CL. 

STD. ERR. 

A V . ( ~-X)2 IN. 

STD. ERR. 

RATIO 
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For the Inverse approach the variation is less than two standard errors 
from the normal. Although the Classical approach demonstrates a slightly 
higher variation than this the results do not indicate any change in the con- 
clusions obtained for normal errors. 

The Eflect of Kurtosis 

In  Table VIII the errors were distributed as Pearson variables with kurtosis 
as indicated. 

TABLEVIII:  

Comparison Between Classical and Inuerse Methods of Calibration: Effect of Kurtosis in the Error 

rr = 0 ,t3 = .5 a = .1 Design: 3(2 = O), 3(z = 1) 01 = 0 

X = O X = . 2  S = . 4  9 = . 6  X = . 8 X = 1  X = 1 . 2  X = 2 9 = 5  X = 1 0  

"U" , t3z=1.7 


AV. (2- X)2 CL. 

STD. FRR. 
AV. ( X  - X)"N. 
STD. ERR. 

RATIO 


,t32 = 2 


AV. (2- X)' CL. 

SRD. FRR. 
AV. (X - X)2 IN. 
STD. ERR. 
RATIO 

82 = 3 

AV.(2- x)eCL. 
STD. *ERR. 
AV. (X  - X)2 IN. 
STD. ERR. 
RATIO 

82 = 4 


AV. (2 - X)2 CL. 

STD. FRR. 
AV. (X - X)' IN. 
STD. ERR. 
RATIO 

The effect of kurtosis on either method is not significant anywhere in this 
table. I t  is interesting to note the lack of significance even when the distribution 
is "U" shaped (6, = 1.7). 

The Ej'ect of a Quadratic Term 

Ott (1966), working with Method A only, shows that if one designs in from 
the end points, the linear calibration given by equation (7) is a fair representa- 
tion for the calibration even when the true model is quadratic e.g. 

Y = CY + PX + 8X2 + E .  (I9) 
The values in Table IX were obtained by adding positive quadratic terms 
(values for 8) to the model, obtaining the corresponding observations and then 
using equations (7) and (13) to estimate X as if the model were linear. 
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TABLEIX: 

Comparison Between Classical and Inverse Methods of Calibration: The Efect of a Positive Quadratic Term 

a = 0 p' = .5 n = .1 Design: 3(x = .15), 3(x = .85) 

0 = o  

AV. ( 2  - X)' CL. .lo4 ,070 .062 .061 .069 ,089 ,175 ,581 ,433 .532 
STD. ERR. ,017 .003 .002 ,002 .002 .008 .068 ,290 .I44 .233 
AV. ( 2  - X)2 IN. ,050 ,041 ,037 .036 .042 .051 .065 .I70 .I67 .I89 
STD. ERR. .001 .001 .001 .001 ,001 .001 ,001 ,003 ,003 ,003 
RATIO 2.07 1.71 1.70 1.69 1.64 1.75 2.69 3.43 2.59 3.14 

0 = .2 

AV. ( 2  - X)' CL. ,0356 ,0302 0283 ,0269 ,0292 ,0397 .0688 ,647 .655 ,651 
STD. ERR. .0007 .0005 ,0005 .0004 ,0005 ,0008 .0016 .010 ,010 ,010 
AV. (9- X ) ,  IN. .0310 ,0231 .0217 .0220 0237 ,0276 .0381 .321 .326 .323 
STD. ERR. .0005 .0004 .0003 .0003 .0003 .0005 .0009 .005 ,005 ,005 
RATIO 1.15 1.31 1.31 1.22 1.23 1.44 1.81 2.02 2.01 2.01 

8 = .5 
AV. ( 9  - X)2 CL. .0187 ,0141 .0159 ,0149 ,0140 .0218 .0614 1.315 1 317 1.323 
STD. ERR. .OW3 ,0002 ,0002 ,0002 ,0002 ,0004 .0008 .008 .008 ,009 
AV. (2- X)' IN. .0200 ,0121 ,0137 .0139 .0131 .0165 .0423 1.017 1 019 1.024 
STD.ERR. .0003 .0002 .0002 .0002 .0002 ,0003 ,0006 ,007 ,007 .007 
RATIO .94 1.16 1.16 1.07 1.07 1.32 1.45 1.29 1.29 1.29 

0 - 1  

AV. ( 2  - X)9 CL. ,0133 .0064 .0112 .0106 ,0064 .0151 .0728 2.113 2.116 2 .I20 
STD. ERR. ,0002 .0001 ,0001 .0001 .0001 .0002 .0006 .007 ,007 .007 
AV. ( 2  - X)2 IN. .0146 .0058 .0103 .0104 .0064 ,0125 .0616 1.918 1.920 1.924 
STD. ERR. ,0002 .0001 ,0001 ,0001 .0001 ,0002 ,0005 -007 .007 .007 
RATIO .91 1.10 1.08 1.01 1.00 1.21 1.18 1.10 1.10 1.10 

0 = 5  

AV. ( 2  - X)2 CL. ,0139 .0129 ,0108 .0107 ,0013 ,0140 .I124 3.748 3.749 3.750 
STD. ERR. ,0001 .OOOO .OOOO .OOOO .OOOO .0001 .0002 .003 ,003 ,003 
AV. (2- X)9 IN. ,0140 .0126 ,0108 .0107 .0013 ,0137 ,1112 3.725 3.726 3.727 
STD. ERR. .0001 .OOOO .OOOO .OOOO .OOOO ,0001 .0002 .003 .003 ,003 
RATIO .99 1.03 1.00 1.00 1.00 1.02 1.01 1.01 1.01 1.01 

0 = 10 

AV. ( 2  - X)9 CL. .0149 ,0107 ,0116 ,0115 ,0108 .0149 ,1226 4 .I06 4 .I07 4 .I08 
STD. ERR. .OOOO .OOOO 0000 .OOOO .OOOO .OOOO .0001 ,002 .002 ,002
AV. ( 9  - X)2 IN .0149 ,0106 .0115 .0115 ,0109 ,0148 ,1222 4.100 4.100 4.100 
STD. ERR. .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .0001 ,002 .002 .002 
RATIO 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Both Method A and B tend to improve (smaller average squared errors) 
for larger positive quadratic terms. At one point (X = 0) and for some positive 
quadratic terms (.5 5 e 5 5 )  the values for the average squared error of Method 
A become slightly lower than that of Method B. Thus, one cannot say that 
Method B is uniformly more robust, unless one eliminates the point X = 0. 
However, Method B still has, in general, a smaller average squared error. It 
should also be pointed out that unless one suspected a positive quadratic term 
one would not, using Method A, design away from the end points. Method B, 
however, appears to be robust to design and, therefore, one could protect 
against a quadratic term without sacrificing mean squared error. 

It seems intuitively unreasonalbe that the methods should have decreasing 
average squared errors when the ignored quadratic term increases. However, 
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the positive quadratic term is in effect increasing the slope of the approximating 
line. From Table I11 we see that the squared error decreases with increasing 
slope. Evidently the increase in squared error due to the quadratic term is 
more than offset by the decrease caused by the increase in effective slope. 
If this is the case, then both methods should have an increasing average squared 
error when the effective slope is decreascd. This can be checked by introducing 
a negative quadratic term. Table X gives the results of ignoring a negative 
quadratic term. 

As was anticipated, the average squared error of both methods increased 
as the magnitude of the negative quadratic term increased. The average squared 
errors for Method B remained relatively small (no larger than .4 for 0 5 X 5 1) 
while the average squared errors for Method A became excessive (over 15) 

TABLES: 

Comparison Between Classical and Inaerse ~l fethods of Ca!zbration: The Effect of a hTegatiae Quadratic Term 

a = O  8 = .5 c = .1 Design: 3(x = .15), 3(x = 35) 

X = O  X = . 2  X = . 4  S = . 6  X = . 8  X = l X = 1 . 2 X = 2 X = 5  X = l O  

8 = o  

AV. (2 - XI2 CL. ,104 .070 .062 .061 ,069 .089 .I75 ,582 .433 .532 
S'TD. ERR. .017 .003 ,002 ,002 ,002 ,008 ,068 .291 ,144 .233 
AV. (2- X)' IN. ,055 .041 .037 -036 ,042 ,051 .065 .I70 ,167 ,169 
STD ERR. 001 -001 ,001 ,001 ,001 .001 ,001 ,003 .003 ,003 
RATIO 2.07 1.71 1.70 1 6 9  1.64 1.75 2.69 3.43 2.59 3.14 

8 = - .01 

AV. (2 - X)' CL. ,206 ,086 ,076 ,075 .075 ,137 ,561 2.148 1.187 1.774 
STD.ERR. .I12 ,014 .012 ,013 ,003 .052 ,448 1 854 ,896 1.478 
AV. (9 - X)' IN. ,052 ,042 ,038 037 .043 .053 ,068 .I90 .I88 ,190
STD. ERR. .001 .001 .001 .001 .001 .001 ,001 .003 ,003 ,003 
RATIO 3.99 2.04 2 0 1  2.04 1.73 2.61 8 2 2  11.29 6.33 9.37 

8 = -.05 

AV. (2 - X)z CL ,136 ,098 ,083 ,080 ,096 ,111 .I61 ,405 .371 .403 
STD. ERR. ,008 -007 ,003 .002 .003 ,004 .017 .055 .028 ,046 
AV. (9 - X)z IN. .058 ,048 .043 .042 -049 .062 ,085 .326 ,323 .323 
STD. ERR. ,001 ,001 ,001 ,001 .001 -001 ,001 .003 ,003 .003 
RATIO 2.36 2.04 1.95 1.93 1.96 1.79 1.89 1.24 1.15 1.25 

AV.(?-X)'CL. 2.46 15.07 4.22 .I74 ,302 ,742 ,757 5.33 9.65 14.82 
STD. ERR. 1.96 14.73 4 .OO ,034 ,082 ,549 .489 4.17 8.71 13.44 
AV. (2- X)z IN. .067 ,057 .050 .048 -057 .077 ,117 -656 .651 .650 
STD. ERR. 001 ,001 .001 ,001 ,001 ,001 -001 .004 ,004 .004 
RATIO 36.70 266.9 84.37 3.63 5.26 9.66 6.47 8.13 14.81 22.80 

AV. (9- X)z CL. 17.25 4.06 8.04 10.03 9.68 6.76 10.33 6.49 15.44 5.99 
STD. ERR. 7.42 1.16 4.39 6.26 4.58 3.05 4.30 2.46 8.20 2.16 
AV. (2 - X)' IN. ,093 .Oi9 .069 ,062 ,079 .I26 ,242 2.166 2.156 2 -147 
STD. ERR. .002 .001 .001 ,001 .002 .002 ,002 ,007 ,007 .007 
RATIO 1801  5 1 3  117.5 162.7 123.2 53.6 4 2 6  3.00 7.16 2.79 

8 = - .5  

AV. (2 - X ) ?  CL. 257.1 161.3 222.4 235.5 177.1 241.6 653 2 16678 16719 16152 
SrD. ERR. 29.9 17 5 23.2 26.0 20.1 27.6 57.1 1166 1175 1122 
AV. (X - X)Z IN. .330 .I55 .095 .093 .I54 ,341 .732 8.300 8.264 8.286 
STD. ERR. .004 .006 .009 005 ,003 .009 ,012 .2<0 ,234 ,237 
RATIO 778 1040 2337 2534 1153 708 802 2010 2023 1949 
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for e _< -.I. Therefore, except for very few points, where Method A had a 
very slightly smaller average squared error than Method B, one can conclude, 
for the misclassification problem, that the Inverse approach, Method B, has 
a smaller average squared error than the Classical approach, Method A. 

CONCLUSION 

The Classical approach to the linear calibration problem is compared with 
the Inverse approach by Monte Carlo methods. Although a mathematical 
proof is not given the Monte Carlo results are such that one can safely conclude 
that the Inverse approach to the calibration problem has a uniformly smaller 
mean squared error than the Classical approach. 

It is evident that this conclusion opens more questions than it settles. For 
example, how do these methods compare using other criteria such as expected 
absolute deviation or expected bias? The answer to this is presently being 
assembled by the author. 

Since the usual method, the Classical approach, is clearly not optimal for 
the calibration problem then what is? This question is being investigated 
by the author and his colleagues but at  the time of this writing no solution 
is available. 

The author would like to thank Dr. John Mandel for deriving the fact that 
the expected squared errors for both methods are functions of P/a. 
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